Merge branch 'main' into refactor/nil-errors

This commit is contained in:
Nicklas Sindlev Andersen 2024-10-02 20:10:23 +02:00 committed by GitHub
commit eb1b7438e8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 172 additions and 188 deletions

View file

@ -86,8 +86,8 @@ import gleam_community/maths/piecewise
/// </div>
///
pub fn gcd(x: Int, y: Int) -> Int {
let absx: Int = piecewise.int_absolute_value(x)
let absy: Int = piecewise.int_absolute_value(y)
let absx = piecewise.int_absolute_value(x)
let absy = piecewise.int_absolute_value(y)
do_gcd(absx, absy)
}
@ -197,8 +197,8 @@ pub fn int_euclidean_modulo(x: Int, y: Int) -> Int {
/// </div>
///
pub fn lcm(x: Int, y: Int) -> Int {
let absx: Int = piecewise.int_absolute_value(x)
let absy: Int = piecewise.int_absolute_value(y)
let absx = piecewise.int_absolute_value(x)
let absy = piecewise.int_absolute_value(y)
absx * absy / do_gcd(absx, absy)
}
@ -240,11 +240,11 @@ pub fn divisors(n: Int) -> List(Int) {
}
fn find_divisors(n: Int) -> List(Int) {
let nabs: Float = piecewise.float_absolute_value(conversion.int_to_float(n))
let nabs = piecewise.float_absolute_value(conversion.int_to_float(n))
let assert Ok(sqrt_result) = elementary.square_root(nabs)
let max: Int = conversion.float_to_int(sqrt_result) + 1
let max = conversion.float_to_int(sqrt_result) + 1
list.range(2, max)
|> list.fold([1, n], fn(acc: List(Int), i: Int) -> List(Int) {
|> list.fold([1, n], fn(acc, i) {
case n % i == 0 {
True -> [i, n / i, ..acc]
False -> acc
@ -288,7 +288,7 @@ fn find_divisors(n: Int) -> List(Int) {
/// </div>
///
pub fn proper_divisors(n: Int) -> List(Int) {
let divisors: List(Int) = find_divisors(n)
let divisors = find_divisors(n)
divisors
|> list.take(list.length(divisors) - 1)
}
@ -340,12 +340,10 @@ pub fn float_sum(arr: List(Float), weights: option.Option(List(Float))) -> Float
[], _ -> 0.0
_, option.None ->
arr
|> list.fold(0.0, fn(acc: Float, a: Float) -> Float { a +. acc })
|> list.fold(0.0, fn(acc, a) { a +. acc })
_, option.Some(warr) -> {
list.zip(arr, warr)
|> list.fold(0.0, fn(acc: Float, a: #(Float, Float)) -> Float {
pair.first(a) *. pair.second(a) +. acc
})
|> list.fold(0.0, fn(acc, a) { pair.first(a) *. pair.second(a) +. acc })
}
}
}
@ -395,7 +393,7 @@ pub fn int_sum(arr: List(Int)) -> Int {
[] -> 0
_ ->
arr
|> list.fold(0, fn(acc: Int, a: Int) -> Int { a + acc })
|> list.fold(0, fn(acc, a) { a + acc })
}
}
@ -451,7 +449,7 @@ pub fn float_product(
|> Ok
_, option.None ->
arr
|> list.fold(1.0, fn(acc: Float, a: Float) -> Float { a *. acc })
|> list.fold(1.0, fn(acc, a) { a *. acc })
|> Ok
_, option.Some(warr) -> {
list.zip(arr, warr)
@ -513,7 +511,7 @@ pub fn int_product(arr: List(Int)) -> Int {
[] -> 1
_ ->
arr
|> list.fold(1, fn(acc: Int, a: Int) -> Int { a * acc })
|> list.fold(1, fn(acc, a) { a * acc })
}
}
@ -563,7 +561,7 @@ pub fn float_cumulative_sum(arr: List(Float)) -> List(Float) {
[] -> []
_ ->
arr
|> list.scan(0.0, fn(acc: Float, a: Float) -> Float { a +. acc })
|> list.scan(0.0, fn(acc, a) { a +. acc })
}
}
@ -613,7 +611,7 @@ pub fn int_cumulative_sum(arr: List(Int)) -> List(Int) {
[] -> []
_ ->
arr
|> list.scan(0, fn(acc: Int, a: Int) -> Int { a + acc })
|> list.scan(0, fn(acc, a) { a + acc })
}
}
@ -665,7 +663,7 @@ pub fn float_cumulative_product(arr: List(Float)) -> List(Float) {
[] -> []
_ ->
arr
|> list.scan(1.0, fn(acc: Float, a: Float) -> Float { a *. acc })
|> list.scan(1.0, fn(acc, a) { a *. acc })
}
}
@ -717,6 +715,6 @@ pub fn int_cumulative_product(arr: List(Int)) -> List(Int) {
[] -> []
_ ->
arr
|> list.scan(1, fn(acc: Int, a: Int) -> Int { a * acc })
|> list.scan(1, fn(acc, a) { a * acc })
}
}

View file

@ -158,7 +158,7 @@ fn combination_without_repetitions(n: Int, k: Int) -> Result(Int, Nil) {
False -> n - k
}
list.range(1, min)
|> list.fold(1, fn(acc: Int, x: Int) -> Int { acc * { n + 1 - x } / x })
|> list.fold(1, fn(acc, x) { acc * { n + 1 - x } / x })
|> Ok
}
}
@ -206,7 +206,7 @@ pub fn factorial(n) -> Result(Int, Nil) {
1 -> Ok(1)
_ ->
list.range(1, n)
|> list.fold(1, fn(acc: Int, x: Int) -> Int { acc * x })
|> list.fold(1, fn(acc, x) { acc * x })
|> Ok
}
}
@ -310,7 +310,7 @@ fn permutation_without_repetitions(n: Int, k: Int) -> Result(Int, Nil) {
}
_, _ ->
list.range(0, k - 1)
|> list.fold(1, fn(acc: Int, x: Int) -> Int { acc * { n - x } })
|> list.fold(1, fn(acc, x) { acc * { n - x } })
|> Ok
}
}
@ -620,18 +620,11 @@ fn do_list_permutation_with_repetitions(
/// </a>
/// </div>
///
pub fn cartesian_product(xset: set.Set(a), yset: set.Set(a)) -> set.Set(#(a, a)) {
pub fn cartesian_product(xset: set.Set(a), yset: set.Set(b)) -> set.Set(#(a, b)) {
xset
|> set.fold(
set.new(),
fn(accumulator0: set.Set(#(a, a)), member0: a) -> set.Set(#(a, a)) {
set.fold(
yset,
accumulator0,
fn(accumulator1: set.Set(#(a, a)), member1: a) -> set.Set(#(a, a)) {
set.insert(accumulator1, #(member0, member1))
},
)
},
)
|> set.fold(set.new(), fn(accumulator0: set.Set(#(a, b)), member0: a) {
set.fold(yset, accumulator0, fn(accumulator1: set.Set(#(a, b)), member1: b) {
set.insert(accumulator1, #(member0, member1))
})
})
}

View file

@ -955,7 +955,7 @@ fn do_logarithm_10(a: Float) -> Float
/// </div>
///
pub fn power(x: Float, y: Float) -> Result(Float, Nil) {
let fractional: Bool = do_ceiling(y) -. y >. 0.0
let fractional = do_ceiling(y) -. y >. 0.0
// In the following check:
// 1. If the base (x) is negative and the exponent (y) is fractional
// then return an error as it will otherwise be an imaginary number

View file

@ -78,8 +78,8 @@ fn validate_lists(
[], _ -> Error(Nil)
_, [] -> Error(Nil)
_, _ -> {
let xarr_length: Int = list.length(xarr)
let yarr_length: Int = list.length(yarr)
let xarr_length = list.length(xarr)
let yarr_length = list.length(yarr)
case xarr_length == yarr_length, weights {
False, _ -> Error(Nil)
True, option.None -> {
@ -87,7 +87,7 @@ fn validate_lists(
|> Ok
}
True, option.Some(warr) -> {
let warr_length: Int = list.length(warr)
let warr_length = list.length(warr)
case xarr_length == warr_length {
True -> {
validate_weights(warr)
@ -169,9 +169,9 @@ pub fn norm(
0.0
|> Ok
_, option.None -> {
let aggregate: Float =
let aggregate =
arr
|> list.fold(0.0, fn(accumulator: Float, element: Float) -> Float {
|> list.fold(0.0, fn(accumulator, element) {
let assert Ok(result) =
piecewise.float_absolute_value(element)
|> elementary.power(p)
@ -182,28 +182,25 @@ pub fn norm(
|> Ok
}
_, option.Some(warr) -> {
let arr_length: Int = list.length(arr)
let warr_length: Int = list.length(warr)
let arr_length = list.length(arr)
let warr_length = list.length(warr)
case arr_length == warr_length {
True -> {
case validate_weights(warr) {
Ok(_) -> {
let tuples: List(#(Float, Float)) = list.zip(arr, warr)
let aggregate: Float =
let tuples = list.zip(arr, warr)
let aggregate =
tuples
|> list.fold(
0.0,
fn(accumulator: Float, tuple: #(Float, Float)) -> Float {
let first_element: Float = pair.first(tuple)
let second_element: Float = pair.second(tuple)
let assert Ok(result) =
elementary.power(
piecewise.float_absolute_value(first_element),
p,
)
second_element *. result +. accumulator
},
)
|> list.fold(0.0, fn(accumulator, tuple) {
let first_element = pair.first(tuple)
let second_element = pair.second(tuple)
let assert Ok(result) =
elementary.power(
piecewise.float_absolute_value(first_element),
p,
)
second_element *. result +. accumulator
})
let assert Ok(result) = elementary.power(aggregate, 1.0 /. p)
result
|> Ok
@ -353,7 +350,6 @@ pub fn minkowski_distance(
|> list.map(fn(tuple: #(Float, Float)) -> Float {
pair.first(tuple) -. pair.second(tuple)
})
norm(differences, p, weights)
}
}
@ -472,7 +468,7 @@ pub fn chebyshev_distance(
|> Error
Ok(_) -> {
list.zip(xarr, yarr)
|> list.map(fn(tuple: #(Float, Float)) -> Float {
|> list.map(fn(tuple) {
{ pair.first(tuple) -. pair.second(tuple) }
|> piecewise.float_absolute_value()
})
@ -527,9 +523,7 @@ pub fn mean(arr: List(Float)) -> Result(Float, Nil) {
_ ->
arr
|> arithmetics.float_sum(option.None)
|> fn(a: Float) -> Float {
a /. conversion.int_to_float(list.length(arr))
}
|> fn(a) { a /. conversion.int_to_float(list.length(arr)) }
|> Ok
}
}
@ -625,7 +619,7 @@ fn do_median(
///
/// pub fn example () {
/// // Degrees of freedom
/// let ddof: Int = 1
/// let ddof = 1
///
/// // An empty list returns an error
/// []
@ -695,7 +689,7 @@ pub fn variance(arr: List(Float), ddof: Int) -> Result(Float, Nil) {
///
/// pub fn example () {
/// // Degrees of freedom
/// let ddof: Int = 1
/// let ddof = 1
///
/// // An empty list returns an error
/// []
@ -762,8 +756,8 @@ pub fn standard_deviation(arr: List(Float), ddof: Int) -> Result(Float, Nil) {
/// import gleam/set
///
/// pub fn example () {
/// let xset: set.Set(String) = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let yset: set.Set(String) =
/// let xset = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let yset =
/// set.from_list(["monkey", "rhino", "ostrich", "salmon"])
/// metrics.jaccard_index(xset, yset)
/// |> should.equal(1.0 /. 7.0)
@ -814,8 +808,8 @@ pub fn jaccard_index(xset: set.Set(a), yset: set.Set(a)) -> Float {
/// import gleam/set
///
/// pub fn example () {
/// let xset: set.Set(String) = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let yset: set.Set(String) =
/// let xset = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let yset =
/// set.from_list(["monkey", "rhino", "ostrich", "salmon", "spider"])
/// metrics.sorensen_dice_coefficient(xset, yset)
/// |> should.equal(2.0 *. 1.0 /. { 4.0 +. 5.0 })
@ -871,8 +865,8 @@ pub fn sorensen_dice_coefficient(xset: set.Set(a), yset: set.Set(a)) -> Float {
/// import gleam/set
///
/// pub fn example () {
/// let yset: set.Set(String) = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let xset: set.Set(String) =
/// let yset = set.from_list(["cat", "dog", "hippo", "monkey"])
/// let xset =
/// set.from_list(["monkey", "rhino", "ostrich", "salmon"])
/// // Test Jaccard index (alpha = beta = 1)
/// metrics.tversky_index(xset, yset, 1.0, 1.0)
@ -894,15 +888,15 @@ pub fn tversky_index(
) -> Result(Float, Nil) {
case alpha >=. 0.0, beta >=. 0.0 {
True, True -> {
let intersection: Float =
let intersection =
set.intersection(xset, yset)
|> set.size()
|> conversion.int_to_float()
let difference1: Float =
let difference1 =
set.difference(xset, yset)
|> set.size()
|> conversion.int_to_float()
let difference2: Float =
let difference2 =
set.difference(yset, xset)
|> set.size()
|> conversion.int_to_float()
@ -949,9 +943,9 @@ pub fn tversky_index(
/// import gleam/set
///
/// pub fn example () {
/// let set_a: set.Set(String) =
/// let set_a =
/// set.from_list(["horse", "dog", "hippo", "monkey", "bird"])
/// let set_b: set.Set(String) =
/// let set_b =
/// set.from_list(["monkey", "bird", "ostrich", "salmon"])
/// metrics.overlap_coefficient(set_a, set_b)
/// |> should.equal(2.0 /. 4.0)
@ -965,11 +959,11 @@ pub fn tversky_index(
/// </div>
///
pub fn overlap_coefficient(xset: set.Set(a), yset: set.Set(a)) -> Float {
let intersection: Float =
let intersection =
set.intersection(xset, yset)
|> set.size()
|> conversion.int_to_float()
let minsize: Float =
let minsize =
piecewise.minimum(set.size(xset), set.size(yset), int.compare)
|> conversion.int_to_float()
intersection /. minsize
@ -1039,36 +1033,34 @@ pub fn cosine_similarity(
msg
|> Error
Ok(_) -> {
let zipped_arr: List(#(Float, Float)) = list.zip(xarr, yarr)
let zipped_arr = list.zip(xarr, yarr)
let numerator_elements: List(Float) =
let numerator_elements =
zipped_arr
|> list.map(fn(tuple: #(Float, Float)) -> Float {
pair.first(tuple) *. pair.second(tuple)
})
|> list.map(fn(tuple) { pair.first(tuple) *. pair.second(tuple) })
case weights {
option.None -> {
let numerator: Float =
let numerator =
numerator_elements
|> arithmetics.float_sum(option.None)
let assert Ok(xarr_norm) = norm(xarr, 2.0, option.None)
let assert Ok(yarr_norm) = norm(yarr, 2.0, option.None)
let denominator: Float = {
let denominator = {
xarr_norm *. yarr_norm
}
numerator /. denominator
|> Ok
}
_ -> {
let numerator: Float =
let numerator =
numerator_elements
|> arithmetics.float_sum(weights)
let assert Ok(xarr_norm) = norm(xarr, 2.0, weights)
let assert Ok(yarr_norm) = norm(yarr, 2.0, weights)
let denominator: Float = {
let denominator = {
xarr_norm *. yarr_norm
}
numerator /. denominator
@ -1137,7 +1129,7 @@ pub fn canberra_distance(
msg
|> Error
Ok(_) -> {
let arr: List(Float) =
let arr =
list.zip(xarr, yarr)
|> list.map(canberra_distance_helper)
@ -1158,9 +1150,9 @@ pub fn canberra_distance(
}
fn canberra_distance_helper(tuple: #(Float, Float)) -> Float {
let numerator: Float =
let numerator =
piecewise.float_absolute_value({ pair.first(tuple) -. pair.second(tuple) })
let denominator: Float = {
let denominator = {
piecewise.float_absolute_value(pair.first(tuple))
+. piecewise.float_absolute_value(pair.second(tuple))
}
@ -1230,17 +1222,17 @@ pub fn braycurtis_distance(
msg
|> Error
Ok(_) -> {
let zipped_arr: List(#(Float, Float)) = list.zip(xarr, yarr)
let numerator_elements: List(Float) =
let zipped_arr = list.zip(xarr, yarr)
let numerator_elements =
zipped_arr
|> list.map(fn(tuple: #(Float, Float)) -> Float {
|> list.map(fn(tuple) {
piecewise.float_absolute_value({
pair.first(tuple) -. pair.second(tuple)
})
})
let denominator_elements: List(Float) =
let denominator_elements =
zipped_arr
|> list.map(fn(tuple: #(Float, Float)) -> Float {
|> list.map(fn(tuple) {
piecewise.float_absolute_value({
pair.first(tuple) +. pair.second(tuple)
})

View file

@ -424,9 +424,9 @@ fn do_round(p: Float, x: Float, mode: option.Option(RoundingMode)) -> Float {
}
fn round_to_nearest(p: Float, x: Float) -> Float {
let xabs: Float = float_absolute_value(x) *. p
let xabs_truncated: Float = truncate_float(xabs)
let remainder: Float = xabs -. xabs_truncated
let xabs = float_absolute_value(x) *. p
let xabs_truncated = truncate_float(xabs)
let remainder = xabs -. xabs_truncated
case remainder {
_ if remainder >. 0.5 -> float_sign(x) *. truncate_float(xabs +. 1.0) /. p
_ if remainder == 0.5 -> {
@ -441,8 +441,8 @@ fn round_to_nearest(p: Float, x: Float) -> Float {
}
fn round_ties_away(p: Float, x: Float) -> Float {
let xabs: Float = float_absolute_value(x) *. p
let remainder: Float = xabs -. truncate_float(xabs)
let xabs = float_absolute_value(x) *. p
let remainder = xabs -. truncate_float(xabs)
case remainder {
_ if remainder >=. 0.5 -> float_sign(x) *. truncate_float(xabs +. 1.0) /. p
_ -> float_sign(x) *. truncate_float(xabs) /. p
@ -450,9 +450,9 @@ fn round_ties_away(p: Float, x: Float) -> Float {
}
fn round_ties_up(p: Float, x: Float) -> Float {
let xabs: Float = float_absolute_value(x) *. p
let xabs_truncated: Float = truncate_float(xabs)
let remainder: Float = xabs -. xabs_truncated
let xabs = float_absolute_value(x) *. p
let xabs_truncated = truncate_float(xabs)
let remainder = xabs -. xabs_truncated
case remainder {
_ if remainder >=. 0.5 && x >=. 0.0 ->
float_sign(x) *. truncate_float(xabs +. 1.0) /. p
@ -823,7 +823,7 @@ pub fn int_flip_sign(x: Int) -> Int {
/// </a>
/// </div>
///
pub fn minimum(x: a, y: a, compare: fn(a, a) -> order.Order) -> a {
pub fn minimum(x: a, y: a, compare: fn(a, a) -> order.Order) {
case compare(x, y) {
order.Lt -> x
order.Eq -> x
@ -869,7 +869,7 @@ pub fn minimum(x: a, y: a, compare: fn(a, a) -> order.Order) -> a {
/// </a>
/// </div>
///
pub fn maximum(x: a, y: a, compare: fn(a, a) -> order.Order) -> a {
pub fn maximum(x: a, y: a, compare: fn(a, a) -> order.Order) {
case compare(x, y) {
order.Lt -> y
order.Eq -> y
@ -909,7 +909,7 @@ pub fn maximum(x: a, y: a, compare: fn(a, a) -> order.Order) -> a {
/// </a>
/// </div>
///
pub fn minmax(x: a, y: a, compare: fn(a, a) -> order.Order) -> #(a, a) {
pub fn minmax(x: a, y: a, compare: fn(a, a) -> order.Order) {
#(minimum(x, y, compare), maximum(x, y, compare))
}
@ -954,7 +954,7 @@ pub fn list_minimum(
[] -> Error(Nil)
[x, ..rest] ->
Ok(
list.fold(rest, x, fn(acc: a, element: a) {
list.fold(rest, x, fn(acc, element) {
case compare(element, acc) {
order.Lt -> element
_ -> acc
@ -1006,7 +1006,7 @@ pub fn list_maximum(
[] -> Error(Nil)
[x, ..rest] ->
Ok(
list.fold(rest, x, fn(acc: a, element: a) {
list.fold(rest, x, fn(acc, element) {
case compare(acc, element) {
order.Lt -> element
_ -> acc
@ -1067,13 +1067,13 @@ pub fn arg_minimum(
arr
|> list_minimum(compare)
arr
|> list.index_map(fn(element: a, index: Int) -> Int {
|> list.index_map(fn(element, index) {
case compare(element, min) {
order.Eq -> index
_ -> -1
}
})
|> list.filter(fn(index: Int) -> Bool {
|> list.filter(fn(index) {
case index {
-1 -> False
_ -> True
@ -1135,13 +1135,13 @@ pub fn arg_maximum(
arr
|> list_maximum(compare)
arr
|> list.index_map(fn(element: a, index: Int) -> Int {
|> list.index_map(fn(element, index) {
case compare(element, max) {
order.Eq -> index
_ -> -1
}
})
|> list.filter(fn(index: Int) -> Bool {
|> list.filter(fn(index) {
case index {
-1 -> False
_ -> True
@ -1200,9 +1200,9 @@ pub fn extrema(
[] -> Error(Nil)
[x, ..rest] ->
Ok(
list.fold(rest, #(x, x), fn(acc: #(a, a), element: a) {
let first: a = pair.first(acc)
let second: a = pair.second(acc)
list.fold(rest, #(x, x), fn(acc, element) {
let first = pair.first(acc)
let second = pair.second(acc)
case compare(element, first), compare(second, element) {
order.Lt, order.Lt -> #(element, element)
order.Lt, _ -> #(element, second)

View file

@ -71,12 +71,12 @@ import gleam_community/maths/piecewise
/// import gleam_community/maths/predicates
///
/// pub fn example () {
/// let val: Float = 99.
/// let ref_val: Float = 100.
/// let val = 99.
/// let ref_val = 100.
/// // We set 'atol' and 'rtol' such that the values are equivalent
/// // if 'val' is within 1 percent of 'ref_val' +/- 0.1
/// let rtol: Float = 0.01
/// let atol: Float = 0.10
/// let rtol = 0.01
/// let atol = 0.10
/// floatx.is_close(val, ref_val, rtol, atol)
/// |> should.be_true()
/// }
@ -89,8 +89,8 @@ import gleam_community/maths/piecewise
/// </div>
///
pub fn is_close(a: Float, b: Float, rtol: Float, atol: Float) -> Bool {
let x: Float = float_absolute_difference(a, b)
let y: Float = atol +. rtol *. float_absolute_value(b)
let x = float_absolute_difference(a, b)
let y = atol +. rtol *. float_absolute_value(b)
case x <=. y {
True -> True
False -> False
@ -126,20 +126,20 @@ fn float_absolute_difference(a: Float, b: Float) -> Float {
/// import gleam_community/maths/predicates
///
/// pub fn example () {
/// let val: Float = 99.
/// let ref_val: Float = 100.
/// let xarr: List(Float) = list.repeat(val, 42)
/// let yarr: List(Float) = list.repeat(ref_val, 42)
/// let val = 99.
/// let ref_val = 100.
/// let xarr = list.repeat(val, 42)
/// let yarr = list.repeat(ref_val, 42)
/// // We set 'atol' and 'rtol' such that the values are equivalent
/// // if 'val' is within 1 percent of 'ref_val' +/- 0.1
/// let rtol: Float = 0.01
/// let atol: Float = 0.10
/// let rtol = 0.01
/// let atol = 0.10
/// predicates.all_close(xarr, yarr, rtol, atol)
/// |> fn(zarr: Result(List(Bool), Nil)) -> Result(Bool, Nil) {
/// case zarr {
/// Ok(arr) ->
/// arr
/// |> list.all(fn(a: Bool) -> Bool { a })
/// |> list.all(fn(a) { a })
/// |> Ok
/// _ -> Nil |> Error
/// }
@ -160,15 +160,13 @@ pub fn all_close(
rtol: Float,
atol: Float,
) -> Result(List(Bool), Nil) {
let xlen: Int = list.length(xarr)
let ylen: Int = list.length(yarr)
let xlen = list.length(xarr)
let ylen = list.length(yarr)
case xlen == ylen {
False -> Error(Nil)
True ->
list.zip(xarr, yarr)
|> list.map(fn(z: #(Float, Float)) -> Bool {
is_close(pair.first(z), pair.second(z), rtol, atol)
})
|> list.map(fn(z) { is_close(pair.first(z), pair.second(z), rtol, atol) })
|> Ok
}
}
@ -302,7 +300,7 @@ fn do_sum(arr: List(Int)) -> Int {
[] -> 0
_ ->
arr
|> list.fold(0, fn(acc: Int, a: Int) -> Int { a + acc })
|> list.fold(0, fn(acc, a) { a + acc })
}
}
@ -444,7 +442,7 @@ fn miller_rabin_test(n: Int, k: Int) -> Bool {
_, 0 -> True
_, _ -> {
// Generate a random int in the range [2, n]
let random_candidate: Int = 2 + int.random(n - 2)
let random_candidate = 2 + int.random(n - 2)
case powmod_with_check(random_candidate, n - 1, n) == 1 {
True -> miller_rabin_test(n, k - 1)
False -> False
@ -457,7 +455,7 @@ fn powmod_with_check(base: Int, exponent: Int, modulus: Int) -> Int {
case exponent, { exponent % 2 } == 0 {
0, _ -> 1
_, True -> {
let x: Int = powmod_with_check(base, exponent / 2, modulus)
let x = powmod_with_check(base, exponent / 2, modulus)
case { x * x } % modulus, x != 1 && x != { modulus - 1 } {
1, True -> 0
_, _ -> { x * x } % modulus

View file

@ -102,7 +102,7 @@ pub fn arange(
|> conversion.float_to_int()
iterator.range(0, num - 1)
|> iterator.map(fn(i: Int) {
|> iterator.map(fn(i) {
start +. conversion.int_to_float(i) *. step_abs *. direction
})
}
@ -161,7 +161,7 @@ pub fn linear_space(
num: Int,
endpoint: Bool,
) -> Result(iterator.Iterator(Float), Nil) {
let direction: Float = case start <=. stop {
let direction = case start <=. stop {
True -> 1.0
False -> -1.0
}
@ -179,7 +179,7 @@ pub fn linear_space(
case num > 0 {
True -> {
iterator.range(0, num - 1)
|> iterator.map(fn(i: Int) -> Float {
|> iterator.map(fn(i) {
start +. conversion.int_to_float(i) *. increment *. direction
})
|> Ok
@ -244,7 +244,7 @@ pub fn logarithmic_space(
True -> {
let assert Ok(linspace) = linear_space(start, stop, num, endpoint)
linspace
|> iterator.map(fn(i: Float) -> Float {
|> iterator.map(fn(i) {
let assert Ok(result) = elementary.power(base, i)
result
})

View file

@ -76,17 +76,17 @@ pub fn beta(x: Float, y: Float) -> Float {
/// </div>
///
pub fn erf(x: Float) -> Float {
let assert [a1, a2, a3, a4, a5]: List(Float) = [
let assert [a1, a2, a3, a4, a5] = [
0.254829592, -0.284496736, 1.421413741, -1.453152027, 1.061405429,
]
let p: Float = 0.3275911
let p = 0.3275911
let sign: Float = piecewise.float_sign(x)
let x: Float = piecewise.float_absolute_value(x)
let sign = piecewise.float_sign(x)
let x = piecewise.float_absolute_value(x)
// Formula 7.1.26 given in Abramowitz and Stegun.
let t: Float = 1.0 /. { 1.0 +. p *. x }
let y: Float =
let t = 1.0 /. { 1.0 +. p *. x }
let y =
1.0
-. { { { { a5 *. t +. a4 } *. t +. a3 } *. t +. a2 } *. t +. a1 }
*. t
@ -131,14 +131,14 @@ fn gamma_lanczos(x: Float) -> Float {
/. { elementary.sin(elementary.pi() *. x) *. gamma_lanczos(1.0 -. x) }
False -> {
let z = x -. 1.0
let x: Float =
list.index_fold(lanczos_p, 0.0, fn(acc: Float, v: Float, index: Int) {
let x =
list.index_fold(lanczos_p, 0.0, fn(acc, v, index) {
case index > 0 {
True -> acc +. v /. { z +. conversion.int_to_float(index) }
False -> v
}
})
let t: Float = z +. lanczos_g +. 0.5
let t = z +. lanczos_g +. 0.5
let assert Ok(v1) = elementary.power(2.0 *. elementary.pi(), 0.5)
let assert Ok(v2) = elementary.power(t, z +. 0.5)
v1 *. v2 *. elementary.exponential(-1.0 *. t) *. x
@ -187,8 +187,8 @@ fn incomplete_gamma_sum(
case t {
0.0 -> s
_ -> {
let ns: Float = s +. t
let nt: Float = t *. { x /. { a +. n } }
let ns = s +. t
let nt = t *. { x /. { a +. n } }
incomplete_gamma_sum(a, x, nt, ns, n +. 1.0)
}
}

View file

@ -697,4 +697,11 @@ pub fn example_test() {
|> should.equal(
set.from_list([#(1.0, 1.0), #(1.0, 2.0), #(10.0, 1.0), #(10.0, 2.0)]),
)
// Cartesian product of two sets with different types
set.from_list(["1", "10"])
|> combinatorics.cartesian_product(set.from_list([1.0, 2.0]))
|> should.equal(
set.from_list([#("1", 1.0), #("1", 2.0), #("10", 1.0), #("10", 2.0)]),
)
}

View file

@ -317,7 +317,7 @@ pub fn median_test() {
pub fn variance_test() {
// Degrees of freedom
let ddof: Int = 1
let ddof = 1
// An empty list returns an error
[]
@ -332,7 +332,7 @@ pub fn variance_test() {
pub fn standard_deviation_test() {
// Degrees of freedom
let ddof: Int = 1
let ddof = 1
// An empty list returns an error
[]
@ -349,19 +349,18 @@ pub fn jaccard_index_test() {
metrics.jaccard_index(set.from_list([]), set.from_list([]))
|> should.equal(0.0)
let set_a: set.Set(Int) = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b: set.Set(Int) = set.from_list([0, 2, 3, 4, 5, 7, 9])
let set_a = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b = set.from_list([0, 2, 3, 4, 5, 7, 9])
metrics.jaccard_index(set_a, set_b)
|> should.equal(4.0 /. 10.0)
let set_c: set.Set(Int) = set.from_list([0, 1, 2, 3, 4, 5])
let set_d: set.Set(Int) = set.from_list([6, 7, 8, 9, 10])
let set_c = set.from_list([0, 1, 2, 3, 4, 5])
let set_d = set.from_list([6, 7, 8, 9, 10])
metrics.jaccard_index(set_c, set_d)
|> should.equal(0.0 /. 11.0)
let set_e: set.Set(String) = set.from_list(["cat", "dog", "hippo", "monkey"])
let set_f: set.Set(String) =
set.from_list(["monkey", "rhino", "ostrich", "salmon"])
let set_e = set.from_list(["cat", "dog", "hippo", "monkey"])
let set_f = set.from_list(["monkey", "rhino", "ostrich", "salmon"])
metrics.jaccard_index(set_e, set_f)
|> should.equal(1.0 /. 7.0)
}
@ -370,19 +369,18 @@ pub fn sorensen_dice_coefficient_test() {
metrics.sorensen_dice_coefficient(set.from_list([]), set.from_list([]))
|> should.equal(0.0)
let set_a: set.Set(Int) = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b: set.Set(Int) = set.from_list([0, 2, 3, 4, 5, 7, 9])
let set_a = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b = set.from_list([0, 2, 3, 4, 5, 7, 9])
metrics.sorensen_dice_coefficient(set_a, set_b)
|> should.equal(2.0 *. 4.0 /. { 7.0 +. 7.0 })
let set_c: set.Set(Int) = set.from_list([0, 1, 2, 3, 4, 5])
let set_d: set.Set(Int) = set.from_list([6, 7, 8, 9, 10])
let set_c = set.from_list([0, 1, 2, 3, 4, 5])
let set_d = set.from_list([6, 7, 8, 9, 10])
metrics.sorensen_dice_coefficient(set_c, set_d)
|> should.equal(2.0 *. 0.0 /. { 6.0 +. 5.0 })
let set_e: set.Set(String) = set.from_list(["cat", "dog", "hippo", "monkey"])
let set_f: set.Set(String) =
set.from_list(["monkey", "rhino", "ostrich", "salmon", "spider"])
let set_e = set.from_list(["cat", "dog", "hippo", "monkey"])
let set_f = set.from_list(["monkey", "rhino", "ostrich", "salmon", "spider"])
metrics.sorensen_dice_coefficient(set_e, set_f)
|> should.equal(2.0 *. 1.0 /. { 4.0 +. 5.0 })
}
@ -391,20 +389,18 @@ pub fn overlap_coefficient_test() {
metrics.overlap_coefficient(set.from_list([]), set.from_list([]))
|> should.equal(0.0)
let set_a: set.Set(Int) = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b: set.Set(Int) = set.from_list([0, 2, 3, 4, 5, 7, 9])
let set_a = set.from_list([0, 1, 2, 5, 6, 8, 9])
let set_b = set.from_list([0, 2, 3, 4, 5, 7, 9])
metrics.overlap_coefficient(set_a, set_b)
|> should.equal(4.0 /. 7.0)
let set_c: set.Set(Int) = set.from_list([0, 1, 2, 3, 4, 5])
let set_d: set.Set(Int) = set.from_list([6, 7, 8, 9, 10])
let set_c = set.from_list([0, 1, 2, 3, 4, 5])
let set_d = set.from_list([6, 7, 8, 9, 10])
metrics.overlap_coefficient(set_c, set_d)
|> should.equal(0.0 /. 5.0)
let set_e: set.Set(String) =
set.from_list(["horse", "dog", "hippo", "monkey", "bird"])
let set_f: set.Set(String) =
set.from_list(["monkey", "bird", "ostrich", "salmon"])
let set_e = set.from_list(["horse", "dog", "hippo", "monkey", "bird"])
let set_f = set.from_list(["monkey", "bird", "ostrich", "salmon"])
metrics.overlap_coefficient(set_e, set_f)
|> should.equal(2.0 /. 4.0)
}

View file

@ -3,31 +3,31 @@ import gleam_community/maths/predicates
import gleeunit/should
pub fn float_is_close_test() {
let val: Float = 99.0
let ref_val: Float = 100.0
let val = 99.0
let ref_val = 100.0
// We set 'atol' and 'rtol' such that the values are equivalent
// if 'val' is within 1 percent of 'ref_val' +/- 0.1
let rtol: Float = 0.01
let atol: Float = 0.1
let rtol = 0.01
let atol = 0.1
predicates.is_close(val, ref_val, rtol, atol)
|> should.be_true()
}
pub fn float_list_all_close_test() {
let val: Float = 99.0
let ref_val: Float = 100.0
let xarr: List(Float) = list.repeat(val, 42)
let yarr: List(Float) = list.repeat(ref_val, 42)
let val = 99.0
let ref_val = 100.0
let xarr = list.repeat(val, 42)
let yarr = list.repeat(ref_val, 42)
// We set 'atol' and 'rtol' such that the values are equivalent
// if 'val' is within 1 percent of 'ref_val' +/- 0.1
let rtol: Float = 0.01
let atol: Float = 0.1
let rtol = 0.01
let atol = 0.1
predicates.all_close(xarr, yarr, rtol, atol)
|> fn(zarr: Result(List(Bool), Nil)) -> Result(Bool, Nil) {
case zarr {
Ok(arr) ->
arr
|> list.all(fn(a: Bool) -> Bool { a })
|> list.all(fn(a) { a })
|> Ok
_ ->
Nil